腾讯云海外购

AI 人工智能

图像超分辨率是计算机视觉和图像处理领域一个非常重要的研究问题,在医疗图像分析、生物特征识别、视频监控与安全等实际场景中有着广泛的应用。随着深度学习技术的发展,基于深度学习的图像超分方法在多个测试任务上,取得了目前最优的性能和效果。本篇综述给出了一个统一的深度学习视角,来回顾最近的超分技术进展,主要包括三个方面: 人机交互是人工智能的重要研究热点。而关于情感的研究使得人机交互变得更加有温度。情感语音识别要求从语音中准确的识别人类所具有的情感表达,有助于机器对于我们语义的理解;而情感语音合成则是为了使得机器合成的语音更加自然,更加具有温度。因此6月1日(周六),《SFFAI31期-情感语音识别与合成论坛》邀请两位出色的博士生(黄健,郑艺斌),分别从情感语音识别与合成两个维度来给带大家了解人机交互。

AI 人工智能

图像超分辨率是计算机视觉和图像处理领域一个非常重要的研究问题,在医疗图像分析、生物特征识别、视频监控与安全等实际场景中有着广泛的应用。随着深度学习技术的发展,基于深度学习的图像超分方法在多个测试任务上,取得了目前最优的性能和效果。本篇综述给出了一个统一的深度学习视角,来回顾最近的超分技术进展,主要包括三个方面: 人机交互是人工智能的重要研究热点。而关于情感的研究使得人机交互变得更加有温度。情感语音识别要求从语音中准确的识别人类所具有的情感表达,有助于机器对于我们语义的理解;而情感语音合成则是为了使得机器合成的语音更加自然,更加具有温度。因此6月1日(周六),《SFFAI31期-情感语音识别与合成论坛》邀请两位出色的博士生(黄健,郑艺斌),分别从情感语音识别与合成两个维度来给带大家了解人机交互。

SFFAI分享 | 马聪:NLP中的生成式预训练模型【附PPT与视频资料】

SFFAI分享 | 马聪:NLP中的生成式预训练模型【附PPT与视频资料】

本次分享将主要关注OpenAI在自然语言处理领域的两个预训练的工作GPT和GPT-2.0. 通过分析GPT的两个模型,重点探讨基于单向语言模型的NLP预训练过程对序列生成任务的作用以及利用预训练模型进行NLP多种任务无监督测试的方式和效果。GPT-2.0在机器翻译、问答系统、文本摘要等复杂任务上的性能展示出NLP预训练模型的强大功能以及其在自然语言序列生成中性能。 ...

SFFAI分享 | 古纾旸:Generative model is more than just GANs【附PPT与视频资料】

SFFAI分享 | 古纾旸:Generative model is more than just GANs【附PPT与视频资料】

近些年来,随着深度学习和对抗生成网络的兴起,图像生成领域取得了巨大的进步。然而,对于计算机视觉领域的生成问题,并非只有生成对抗网络这样唯一的解决途径。在SFFAI22我的演讲中,我们将以两篇工作为例,介绍常见的生成模型,以及对于生成模型中的不同问题我们的解决方案: ...

医学图像分割:U-Net系列网络简介

医学图像分割:U-Net系列网络简介

在图像分割任务特别是医学图像分割中,U-Net[1]无疑是最成功的方法之一,该方法在2015年MICCAI会议上提出,目前已达到四千多次引用。其采用的编码器(下采样)-解码器(上采样)结构和跳跃连接是一种非常经典的设计方法。目前已有许多新的卷积神经网络设计方式,但很多仍延续了U-Net的核心思想,加入了新的模块或者融入其他设计理念。本文对U-Net及其几种改进版做一个介绍。...

本周精选共读论文《计算机视觉图像分割》六篇

本周精选共读论文《计算机视觉图像分割》六篇

图像语义分割是目前计算机视觉领域要解决的一个核心问题,属于视觉中场景理解的研究范畴之一,近期受到了越来越多的研究者的关注,现实中许多应用程序需要精确和高效的分割机制:自主驾驶,室内导航,甚至虚拟或增强现实系统等等。在深度学习技术的推动下,各种各样的深度图像分割模型被提出,一些公开的数据集不断地被新模型刷榜。今天的两位主讲嘉宾为大家精选了图像分割领域的经典与前沿最新文章,带你更好的领略图像分割的风采......

学术资讯 | 关于“深度合成”技术的十个误解 (内含完整报告)

学术资讯 | 关于“深度合成”技术的十个误解 (内含完整报告)

随着人工智能时代的到来,下一代媒体将由人工智能驱动,人工智能可能给数字内容领域带来重塑。其中,可以实现换脸、人脸合成、语音合成、视频生成甚至数字虚拟人等诸多应用形式的“深度合成”技术,作为人工智能发展到一定阶段的产物,逐步从deepfake、deepnude等色情性的换脸视频的阴影中走了出来,迎来了商业化时代。AI虚拟主播、电商平台上的“数字试穿”、电影后期制作、社交产品中的人脸融合、合成人脸和合......

SFFAI分享 | Geometric Relation Learning in 3D Point Cloud Analysis

SFFAI分享 | Geometric Relation Learning in 3D Point Cloud Analysis

近年来,卷积神经网络(CNN)在图像这类规则数据的处理中获得了举世瞩目的成功,然而如何拓展CNN以分析点云这种不规则数据,仍然是一个开放的研究问题。对于点云而言,每一个点并非孤立存在,相邻的点形成一个有意义的形状,因此对点间关系进行深度学习建模非常重要。在SFFAI25分享会中: ...

类脑计算的前沿论文,看我们推荐的这7篇

类脑计算的前沿论文,看我们推荐的这7篇

近年来随着传统人工智能算法逐步陷入瓶颈,人们期待与从脑科学中得到相应的启发来改进模型,进而从狭义人工智能走向通用人工智能。类脑智能作为人工智能重要的应用方向之一,也在逐步探索高效、快速并且具有生物可解释性的算法模型。...

精选论文 | 图神经网络时间节点【附打包下载】

精选论文 | 图神经网络时间节点【附打包下载】

最近,图神经网络广泛受到了各界的关注,基于图神经网络的模型和应用在异质图表示学习和零样本学习任务中取得了不错的效果。今天,两位主讲嘉宾为大家精选了图神经网络方法中的几个代表性模型以及零样本学习模型,和大家一起学习分享最新的研究进展。...

精选论文 | 机器翻译【附打包下载】

精选论文 | 机器翻译【附打包下载】

机器翻译一直是自然语言处理领域的热门及前沿方向,不论是sequence-to-sequence架构,attention mechanism还是Transformer模型等,都和机器翻译有着最为紧密的关系。6月2日(周日),《SFFAI 32-机器翻译》两位主讲嘉宾(张文,邵晨泽)为大家精选了机器翻译近期在模型、训练、解码以及非自回归结构中的几篇代表性工作,和大家一起学习分享最新的研究进展。...

语音关键词检测方法综述【附PPT与视频资料】

语音关键词检测方法综述【附PPT与视频资料】

随着智能音箱、语音助手等应用的出现,普通人也可以像科幻场景一样使用语音与机器进行交流。语音关键词检测是实现人机语音交互的重要技术,被广泛地应用于各类智能设备、语音检索系统当中。语音关键词检测可以分成两种,一种是用于设备唤醒、设备控制keyword spotting;一种是应用于语音文档检索的spoken termdetection,二者虽然名字类似,但从功能侧重和技术路线上都有所区别。本次分享介绍......

基于素描图的细粒度图像检索【附PPT与视频资料】

基于素描图的细粒度图像检索【附PPT与视频资料】

近年来,随着监控摄像头的普及与应用,监控摄像头系统在打击罪犯和刑侦安全方面起到了至关重要的作用。利用监控系统查找犯罪嫌疑人,从而侦破案件已经成为公安机关的重要破案手段。这一重要应用使得行人重识别问题得到广泛关注。行人重识别是指给定行人在某一监控摄像头下的图片,利用计算机视觉算法在其余监控摄像头下识别出这一特定行人。 ...

脉冲神经网络与小样本学习【附PPT】

脉冲神经网络与小样本学习【附PPT】

自从2012年AlexNet兴起,人工神经网络(ANN)在图像分类领域大放异彩。然而这么多年过去了,这些成熟的神经网络模型不论是在功能上还是结构上,与生物的大脑还有很大的差距。从结构上来讲,生物大脑中的神经元结构远比ANN中的复杂,就大脑神经元的信号模型进行比较,ANN的神经元只需要对信号求和然后直接通过简单的激活函数后全部输出就可以,而大脑神经元接收信号后直接影响的是膜电位,当膜电位足够大时再放......

全景分割任务介绍及其最新进展【附PPT与视频资料】

全景分割任务介绍及其最新进展【附PPT与视频资料】

对图像场景的准确理解和建模是人们一直以来的诉求,这是因为精确的场景模型是后续高层的智能安防及自动驾驶任务的基础。目前对于场景的像素级理解主要包括了实例分割和语义分割,而新提出的全景分割(Panoptic Segmentation)则对这两个任务进行了统一,推动了对场景的全面理解。此次分享的文章主要关于全景分割任务介绍及其进展。 ...

基于深度学习的图像超分辨率最新进展与趋势【附PDF】

基于深度学习的图像超分辨率最新进展与趋势【附PDF】

图像超分辨率是计算机视觉和图像处理领域一个非常重要的研究问题,在医疗图像分析、生物特征识别、视频监控与安全等实际场景中有着广泛的应用。随着深度学习技术的发展,基于深度学习的图像超分方法在多个测试任务上,取得了目前最优的性能和效果。本篇综述给出了一个统一的深度学习视角,来回顾最近的超分技术进展,主要包括三个方面: ...

精选论文 | 视频目标跟踪专题【附打包下载】

精选论文 | 视频目标跟踪专题【附打包下载】

随着近年来智能城市监控的发展和自动驾驶的兴起,视频目标跟踪得到了更多的研究者的关注,其中包括单目标跟踪、多目标跟踪、跨摄像头多目标跟踪等等。目标跟踪也涉及很多相关领域,例如视频分割、轨迹预测、行人重识别等等。5月30日(周四),两位主讲嘉宾(高旭,王强)为大家精选了视频目标跟踪及相关领域中的几篇代表性工作,和大家一起学习、分享最新的研究进展。...

图像分割最新资料汇总(语义分割、实例分割、视频分割、医疗图像分割、自动驾驶…)

图像分割最新资料汇总(语义分割、实例分割、视频分割、医疗图像分割、自动驾驶…)

图像分割(image segmentation)是计算机视觉领域最为经典的研究问题之一,至今仍受到学术界和工业界的高度重视。所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。目前,研究者们最为关注的研究方向主要有三个:...

AI新领地—打通图像增强和视觉识别的“任督二脉”

AI新领地—打通图像增强和视觉识别的“任督二脉”

众所周知,深度学习算法已经占领很多计算机视觉任务的制高点,在图像识别等任务上的精度已然超过了人类的平均水平。然而,绝大多数深度学习算法只有在高质量的图像上才能取得高性能。实际图像采集过程中,存在各种降质因素,导致图像质量和视觉效果下降,深度学习算法的性能也随之降低。...

SFFAI分享 | 高君宇:图神经网络在视频分类中的应用【附PPT与视频资料】

SFFAI分享 | 高君宇:图神经网络在视频分类中的应用【附PPT与视频资料】

高君宇,中国科学院自动化研究所博士生,导师为徐常胜研究员。研究方向为基于深度学习的视频理解与应用。在IEEE Transaction on Image Processing(TIP)、CVPR、AAAI、ACM MM等CCF推荐的A类期刊、会议中发表多篇一作论文。获得了国家奖学金、中国科学院大学三好学生、三好学生标兵、百度奖学金、必和必拓奖学金、Rokid奖学金等。 ...

精选论文 | 情感语音识别与合成【附打包下载】

精选论文 | 情感语音识别与合成【附打包下载】

人机交互是人工智能的重要研究热点。而关于情感的研究使得人机交互变得更加有温度。情感语音识别要求从语音中准确的识别人类所具有的情感表达,有助于机器对于我们语义的理解;而情感语音合成则是为了使得机器合成的语音更加自然,更加具有温度。因此6月1日(周六),《SFFAI31期-情感语音识别与合成论坛》邀请两位出色的博士生(黄健,郑艺斌),分别从情感语音识别与合成两个维度来给带大家了解人机交互。...

精选论文 | 人脸图像合成【附打包下载】

精选论文 | 人脸图像合成【附打包下载】

最近,人脸图像合成技术越来越受到社会各界的关注。人脸图像合成技术不仅可以实现“换脸”、“人脸编辑”等娱乐效果,而且能够有效提高人脸识别等技术的性能。今天,两位主讲嘉宾为大家精选了人脸图像合成中的几篇代表性的工作,和大家一起学习分享最新的研究进展。...